Refinement

Refinement on F
$R=0.067$
$w R=0.057$
$S=1.58$
1941 reflections
206 parameters
H atoms riding, $\mathrm{C}-\mathrm{H}$ $0.96 \AA$
$w=1 /\left[\sigma^{2}(F)+0.0003 F^{2}\right]$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
	x	$y(2)$	$0.7747(1)$	$0.064(1)$
$\mathrm{O}(1)$	$0.7960(2)$	$0.8109(2)$	$0.7439(2)$	$0.056(1)$
$\mathrm{C}(2)$	$0.6957(4)$	$0.9153(3)$	$0.7239(2)$	$0.050(1)$
$\mathrm{C}(3)$	$0.4657(4)$	$0.8623(3)$	$0.7397(1)$	$0.047(1)$
$\mathrm{N}(4)$	$0.3689(3)$	$0.6942(2)$	$0.7731(2)$	$0.044(1)$
$\mathrm{C}(5)$	$0.4747(4)$	$0.6086(3)$	$0.8023(2)$	$0.049(1)$
$\mathrm{C}(6)$	$0.7004(4)$	$0.6564(3)$	$0.7317(1)$	$0.089(1)$
$\mathrm{O}(2)$	$0.7968(3)$	$1.0483(2)$	$0.7819(2)$	$0.069(1)$
$\mathrm{C}(31)$	$0.3859(4)$	$0.9994(3)$	$0.7867(1)$	$0.055(1)$
$\mathrm{O}(5)$	$0.3907(3)$	$0.4502(2)$	$0.7530(2)$	$0.066(1)$
$\mathrm{C}(51)$	$0.1792(4)$	$0.3774(3)$	$0.9021(2)$	$0.055(1)$
$\mathrm{C}(61)$	$0.7673(4)$	$0.6789(3)$	$0.9551(2)$	$0.083(1)$
$\mathrm{C}(62)$	$0.6516(5)$	$0.7914(4)$	$0.9226(2)$	$0.078(1)$
$\mathrm{C}(63)$	$0.9962(4)$	$0.7644(4)$	$0.9269(2)$	$0.082(1)$
$\mathrm{C}(64)$	$0.7302(5)$	$0.5020(4)$	$0.6247(2)$	$0.049(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$0.4108(3)$	$0.8588(3)$	$0.5680(2)$	$0.058(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$0.5015(4)$	$0.7292(3)$	$0.4711(2)$	$0.059(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$0.4483(4)$	$0.7120(3)$	$0.4213(1)$	$0.085(1)$
$\mathrm{O}\left(3^{\prime}\right)$	$0.5752(3)$	$0.7141(3)$	$0.41)$	
$\mathrm{C}\left(4^{\prime}\right)$	$0.2298(4)$	$0.6912(4)$	$0.4397(2)$	$0.075(1)$
$\mathrm{C}\left(5^{\prime}\right)$	$0.1394(4)$	$0.8192(4)$	$0.4968(2)$	$0.074(1)$
$\mathrm{C}\left(6^{\prime}\right)$	$0.1836(4)$	$0.8210(3)$	$0.5941(2)$	$0.063(1)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.336(3)$	$\mathrm{O}(1)-\mathrm{C}(6)$	$1.439(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.513(3)$	$\mathrm{C}(3)-\mathrm{N}(4)$	$1.455(3)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$1.256(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.502(3)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(6)$	$124.5(2)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.2(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$115.4(2)$	$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$120.0(2)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$128.5(2)$	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$110.3(2)$
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-8.7(3)$	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$12.6(3)$	
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)-0.5(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$4.3(3)$	
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$0.8(3)$	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)-8.9(3)$	

Six low-angle reflections suffered from extinction and were thus omitted. The methyl groups were refined as rigid groups in order to allow for internal rotation.

Data collection: profile fitting (Clegg, 1981). Cell refinement: program in Clegg (1981). Data reduction: SHELXTL (Sheldrick, 1983). Program(s) used to solve structure: SHELXTL using direct methods. Program(s) used to refine structure: SHELXTL using blocked-cascade least squares. Molecular graphics: XP (SHELXTL). Software used to prepare matenflal for publication: SHELXTL.

We thank Professor U. Schöllkopf (University of Göttingen, Germany) for kindly providing the sample.

[^0](I)

Abstract

$1 r, 9 t, 16 t$-Trioxahexaspiro[2.0.3.0.2.0.3.0.2.0.3.0]heneicosane, $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$, is mirror-symmetric with alternating three- and four-membered rings. Its structure agrees well with that of the parent hydrocarbon. Notable features are the strongly alternating bond angles within the cyclohexane ring and the differing bond lengths within the cyclobutane rings.

Comment

The structure and dynamics of cyclohexane derivatives depend on the number and the size of the substituents. Some highly substituted compounds show unusually high barriers of ring inversion (Fitjer et al., 1988). For example, hexaspiro[2.0.3.0.2.0.3.0.2.0.3.0]heneicosane, a fully cycloalkylated cyclohexane with alternating three- and four-membered rings, adopts a chair conformation in the crystal but shows considerable populations of twist-boat conformations in solution (Fitjer et al., 1984). We have determined the structure of a derivative, (I), in which a methylene group is replaced by an O atom in each of the three-membered rings.

Acta Crystallographica Section C ISSN 0108-2701 © 1996

The structure exhibits exact mirror symmetry with two opposite substituent rings in the mirror plane. The cyclohexane ring, which adopts a chair conformation, shows alternating bond angles, the larger ones being centred at the atoms that form part of a three-membered ring. The bond lengths within the four-membered rings are quite different, those to the spiro C atoms being considerably longer. One cyclobutane ring is slightly puckered while the other is forced to be planar by the crystallographic symmetry. All these properties agree well with the crystal structure of the parent hydrocarbon (Fitjer et al., 1984).

Fig. 1. Molecular structure of (I) showing 30% probability displacement ellipsoids (H atoms omitted).

Experimental

The compound was provided by Professor L. Fitjer (University of Göttingen, Germany) and recrystallized from acetone.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
$M_{r}=288.4$
Orthorhombic
Pmn2
$a=13.734$ (2) \AA
$b=8.281$ (1) \AA
$c=6.530(1) \AA$
$V=742.7 \AA^{3}$
$Z=2$
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe-Siemens four-circle diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
none
1465 measured reflections
746 independent reflections 645 observed reflections [$F>3 \sigma(F)]$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 40 reflections
$\theta=10-12.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.5 \times 0.3 \times 0.2 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 9$
$l=-7 \rightarrow 7$
3 standard reflections monitored every 100 reflections intensity decay: none

Refinement

Refinement on F
$R=0.049$
$w R=0.056$
$S=1.21$
645 reflections
105 parameters
H atoms riding, $\mathrm{C}-\mathrm{H}$
0.96 Å
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)
$w=1 /\left[\sigma^{2}(F)+0.001 F^{2}\right]$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(\mathbf{1} / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }}$
$\mathrm{O}(1)$	$1 / 2$	$0.7320(4)$	0.6081	$0.052(1)$
$\mathrm{C}(2)$	$1 / 2$	$0.5824(6)$	$0.5002(11)$	$0.051(2)$
$\mathrm{C}(3)$	$1 / 2$	$0.7342(5)$	$0.3851(10)$	$0.032(2)$
$\mathrm{C}(4)$	$0.4050(2)$	$0.7987(4)$	$0.2969(8)$	$0.037(1)$
$\mathrm{C}(5)$	$0.3113(3)$	$0.7288(5)$	$0.3978(11)$	$0.060(2)$
$\mathrm{C}(6)$	$0.2983(3)$	$0.6160(5)$	$0.2130(10)$	$0.065(2)$
$\mathrm{C}(7)$	$0.3721(3)$	$0.7173(5)$	$0.0918(9)$	$0.052(1)$
$\mathrm{C}(8)$	$0.4125(2)$	$0.9828(4)$	$0.2956(9)$	$0.034(1)$
$\mathrm{O}(9)$	$0.3221(2)$	$1.0671(3)$	$0.2649(8)$	$0.055(1)$
$\mathrm{C}(10)$	$0.3675(3)$	$1.0724(4)$	$0.4635(9)$	$0.045(1)$
$\mathrm{C}(11)$	$1 / 2$	$1.0526(5)$	$0.1873(10)$	$0.036(2)$
$\mathrm{C}(12)$	$1 / 2$	$1.0400(7)$	$-0.0509(11)$	$0.059(2)$
$\mathrm{C}(13)$	$1 / 2$	$1.2190(7)$	$-0.0673(13)$	$0.073(3)$
$\mathrm{C}(14)$	$1 / 2$	$1.2406(6)$	$0.1605(11)$	$0.053(2)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{C}(3)-\mathrm{C}(4)$	$1.523(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.558(6)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.566(7)$	$\mathrm{C}(4)-\mathrm{C}(8)$	$1.528(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.536(8)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.536(7)$
$\mathrm{C}(8)-\mathrm{C}(11)$	$1.509(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.56(1)$
$\mathrm{C}(11)-\mathrm{C}(14)$	$1.567(7)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.50(1)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.486(9)$		
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}\left(4^{\mathrm{i}}\right)$	$117.9(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	$87.9(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$107.1(3)$	$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(11)$	$116.0(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$87.4(4)$	$\mathrm{C}(8)-\mathrm{C}(11)-\mathrm{C}\left(8^{i}\right)$	$105.5(5)$
$\mathrm{C}\left(4^{\mathrm{i}}\right)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$		$-49.6(7)$	
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-14.8(3)$		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(11)$	$54.4(6)$		
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(11)-\mathrm{C}\left(8^{\mathrm{i}}\right)$	$-58.8(7)$		

Symmetry code: (i) $1-x, y, z$.
Reflection pairs h, k, l and h, k, \bar{l} were merged. The structure solution in the correct space group failed so the symmetry was temporarily reduced to Pn . No evidence for $\left(\mathrm{CH}_{2} / \mathrm{O}\right)$ disorder within the three-membered rings was observed.

Data collection: profile fitting (Clegg, 1981). Cell refinement: program in Clegg (1981). Data reduction: SHELXTL (Sheldrick, 1983). Program(s) used to solve structure: SHELXTL using direct methods. Program(s) used to refine structure: SHELXTL using blocked-cascade least squares. Molecular graphics: XP (SHELXTL). Software used to prepare material for publication: SHELXTL.

We thank Professor L. Fitjer (University of Göttingen) for kindly providing the sample.

[^1]
References

Clegg, W. (1981). Acta Cryst. A37, 22-28.
Fitjer, L., Giersig, M., Wehle, D., Dittmer, M., Koltermann, G.-W., Schormann, N. \& Egert, E. (1988). Tetrahedron, 44, 393-404.
Fitjer, L., Klages, U., Kühn, W., Stephenson, D. S., Binsch, G., Noltemeyer, M., Egert, E. \& Sheldrick, G. M. (1984). Tetrahedron, 40, 4337-4349.
Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

(2)
a three-step sequence. The Heck product can also be transformed by hydroboration into a primary alcohol, which can then be acylated with (-)-($1 S, 4 R$)-camphanic acid chloride to give the title crystalline ester (2). The Xray crystallographic analysis of compound (2) (Fig. 1) allowed us to determine the relative configuration of the stereogenic centers. Since the stereochemistry of the camphanic acid moiety is known, the absolute configuration of the decaline moiety and hence that of 7-methoxy-1-demethylcalamenene could be deduced. This is the first example of the structure determination of a compound of the 1 -demethyl series.

Fig. 1. The structure of compound (2) showing 50% probability displacement ellipsoids.

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: J7.1117). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

[^1]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1118). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

